摘要

Nonlinear manifold learning based spectral unmixing provides an alternative to direct nonlinear unmixing methods for accommodating nonlinearities inherent in hyperspectral data. Although manifolds can effectively capture nonlinear features in the dimensionality reduction stage of unmixing, the computational overhead is excessive for large remotely sensed data sets. Manifold approximation using a set of distinguishing points is commonly utilized to mitigate the computational burden, but selection of these landmark points is important for adequately representing the topology of the manifold. This study proposes an active landmark sampling framework for manifold learning based spectral unmixing using a small initial landmark set and a computationally efficient backbone-based strategy for constructing the manifold. The active landmark sampling strategy selects the best additional landmarks to develop a more representative manifold and to increase unmixing accuracy.

  • 出版日期2014-11

全文