An Analysis of the Acoustic Input Impedance of the Ear

作者:Withnell Robert H*; Gowdy Lauren E
来源:Journal of the Association for Research in Otolaryngology, 2013, 14(5): 611-622.
DOI:10.1007/s10162-013-0407-y

摘要

Ear canal acoustics was examined using a one-dimensional lossy transmission line with a distributed load impedance to model the ear. The acoustic input impedance of the ear was derived from sound pressure measurements in the ear canal of healthy human ears. A nonlinear least squares fit of the model to data generated estimates for ear canal radius, ear canal length, and quantified the resistance that would produce transmission losses. Derivation of ear canal radius has application to quantifying the impedance mismatch at the eardrum between the ear canal and the middle ear. The length of the ear canal was found, in general, to be longer than the length derived from the one-quarter wavelength standing wave frequency, consistent with the middle ear being mass-controlled at the standing wave frequency. Viscothermal losses in the ear canal, in some cases, may exceed that attributable to a smooth rigid wall. Resistance in the middle ear was found to contribute significantly to the total resistance. In effect, this analysis "reverse engineers" physical parameters of the ear from sound pressure measurements in the ear canal.

  • 出版日期2013-10