摘要

This paper provides a new method for model-based estimation of intra-cortical connectivity from electrophysiological measurements. A novel closed-form solution for the connectivity function of the Amari neural field equations is derived as a function of electrophysiological observations. The resultant intra-cortical connectivity estimate is driven from experimental data, but constrained by the mesoscopic neurodynamics that are encoded in the computational model. A demonstration is provided to show how the method can be used to image physiological mechanisms that govern cortical dynamics, which are normally hidden in clinical data from epilepsy patients. Accurate estimation performance is demonstrated using synthetic data. Following the computational testing, results from patient data are obtained that indicate a dominant increase in surround inhibition prior to seizure onset that subsides in the cases when the seizures spread.

  • 出版日期2015-9