摘要

In order to solve the problem of optimal dispatching of photovoltaic power for local consumption to the greatest degree in a photovoltaic greenhouse, this paper proposes a multiform energy optimal dispatching model and a solution algorithm. First, an input-output power model is established for energy storages which are reservoir, biogas digester, and block wall with phase-change thermal storage. Based on it, multiform energy storages play a bridging role of energy transfer in optimal energy dispatching. Subsequently, an optimal energy dispatching model is proposed with the objective of minimizing the sum of the squares of the difference between the loads and the photovoltaic generation in dispatching periods. Control variables are working state quantities of the time-shiftable loads and input-output state quantities of energy storages in dispatching periods. Finally, a genetic algorithm with matrix binary coding is used to solve the energy optimal dispatching model. Simulation results of a practical photovoltaic greenhouse facility agricultural micro energy network system in three typical weather conditions showed that the method could fully utilize the energy transfer function of the multiform energy storage and the time-shiftable characteristics of the agricultural load to achieve the maximum effect of increasing the local consumption of the photovoltaic power.