摘要

Utilizing data from the Quick Scatterometer (QuikSCAT), a new observational parameter related to mesoscale cold pool activity [termed cold pool kinetic energy (CPKE)] is developed and investigated. CPKE and the Climate Prediction Center (CPC) morphing technique (CMORPH) rainfall product (both scaled to 2.25 degrees) are geolocated to 25 tropical island radiosonde sites. CPKE and radiosonde-derived nondilute CAPE, entraining CAPE (ECAPE), saturation fraction, and a new measure of convective inhibition (that takes into account stable layers above the LFC) are investigated with respect to rainfall time tendencies. Over the life cycle of rainfall, the composite temporal evolutions of CPKE and convective inhibition are quantitatively similar, but slightly out of phase. The maximum in CPKE precedes the maximum in convective inhibition by 3-6 h, thus allowing for an oscillation in the ratio of convective inhibition to CPKE relative to maximum rainfall. This ratio falls below unity at the time rainfall begins increasing and averages to near unity over the entire life cycle. These results imply a lagged, coupled relationship between CPKE and convective inhibition during rainfall. The rapid increase in rainfall occurs when saturation fraction and ECAPE exceed approximately 70% and 280 J kg(-1), respectively, consistent with previously noted thresholds for deep convection transition. However, since similar thermodynamic conditions are found before the increase in rainfall, observations support a hypothesis that the onset time for transition from light to heavy rainfall occurs when triggering energy (as captured in CPKE) approaches and exceeds convective inhibition. The observed onset and time scale for CAPE depletion by convection is nearly equivalent to the initial temporal appearance and time duration (6-12 h) that CPKE exceeds convective inhibition.

  • 出版日期2013-7