摘要

To investigate the degradation of high concentration pollutant by Fe/Cu bimetallic system at a high operating temperature, 10,000mg/L acid orange 7 (AO7) aqueous solution was treated by Fe/Cu bimetallic system at 80 degrees C. First, the effect of the operating temperature (30-80 degrees C) on the reactivity of Fe/Cu bimetallic particles was investigated thoroughly. Then, the studies on the effect of theoretical Cu mass loading, Fe/Cu dosage, stirring speed and initial pH on the reactivity of Fe/Cu bimetallic particles at a high temperature (i.e., 80 degrees C) were carried out, respectively. The degradation and transformation process of AO7 was studied by using COD, TOC and UV-Vis spectra. The results indicate that high concentration pollutant could be removed effectively by Fe/Cu bimetallic system at a high operating temperature. And the removal efficiencies of AO7 by Fe/Cu bimetallic system were in accordance with the pseudo-first-order model. Finally, it was observed that the high temperature could accelerate mass transport rate and overcome the high activation energy barrier to significantly improve the reactivity of Fe/Cu bimetallic particles. Therefore, the higher removal efficiency could be obtained by Fe/Cu system at a high operating temperature. Thus, the high operating temperature played a leading role in the degradation of high concentration pollutant.