摘要

Hypertrophic scars and keloid are dermal proliferative disorders in wound healing. Transforming growth factor beta (TGF-beta) has been implicated in scar formation through the activation of fibroblasts and the acceleration of collagen deposition. Our study aimed to design a novel truncated (27-123 residues) type II TGF-beta receptor (tTGF beta RII) and to determine its effects on the proliferation of keloid fibroblasts and the collagen synthesis as well as TGF-beta I expression of the cells. The coding sequences of TGF-beta I and tTGF beta RII were amplified using RT-PCR and then cloned into pGBKT7 and pGADT7 vectors. A yeast two-hybrid experiment and a glutathione S-transferase (GST)-pull down assay were performed to verify the affinity of tTGF beta RII to TGF-beta I. Our results indicated that treatment with tTGF beta RII inhibited the growth of keloid fibroblasts and suppressed the synthesis of type I collagen in keloid fibroblasts in a concentration-dependent manner. Moreover, northern and western blot analysis revealed a decline of the TGF-beta I expression at both mRNA and protein levels after exposure to 5, 10 or 20 mu g/ml of tTGF beta RII. Together, our data suggested that the exogenous tTGF beta RII can efficiently trap TGF-beta I from access to wild-type receptors and can suppress TGF-beta I triggered signals. Thus it may potentially be clinically applied to scar therapy.