Abrogation of AuroraA-TPX2 by novel natural inhibitors: molecular dynamics-based mechanistic analysis

作者:Gupta Ankita; Jain Ritu; Wahi Divya; Goyal Sukriti; Jamal Salma; Grover Abhinav*
来源:Journal of Receptors and Signal Transduction, 2015, 35(6): 626-633.
DOI:10.3109/10799893.2015.1041645

摘要

Introduction: Cancer is characterized by uncontrolled cell growth and genetic instabilities. The human Aurora-A kinase protein plays a crucial role in spindle assembly during mitosis and is activated by another candidate oncogene, targeting protein for Xklp2 (TPX2). It has been proposed that dissociation of Aurora A-TPX2 complex leads to disruption of mitotic spindle apparatus, thereby preventing cell division and further tumor growth. Materials and methods: A large natural compound library was docked against the active site of Aurora A-TPX2 complex. The protein-ligand complexes were subjected to molecular dynamics simulation to ascertain their binding stability. The drug properties of the compounds were analyzed to observe their drug-like properties. Results: The virtual screening of natural compound library yielded two high scoring compounds, the first compound CTOM [ZINC ID: 38143674] (Glide score: -9.49) was stable for 17 ns while the second TTOM (Glide score: -9.07) was stable for 15 ns. While CTOM interacted with His280, Thr288 of Aurora A and Tyr34, Lys38 of TPX2, TTOM interacted with Arg285 and Arg286 in addition to the residues involved with CTOM. Conclusions: We report two natural compounds as potential drugs leads for the disruption of this complex. These ligands show a preferable docking score and have many drugs like properties within in the range of 95% of known drugs. The study provides evidence that CTOM and TTOM can efficiently inhibit the TPX2-mediated activation of Aurora A. Thus, it paves way for an elaborate investigation and establishes the importance of computational approaches as time- and cost-effective techniques.

  • 出版日期2015-11-2