摘要

Age-related changes in brain function are complex. Although ageing is associated with a reduction in cerebral blood flow and neuronal activity, task-related processing is often correlated with an enlargement of the corresponding and additionally recruited brain areas. This supplemental employment is considered an attempt to compensate for deficits in the ageing brain. Although there are contradictory reports regarding the role of the primary somatosensory cortex (SI), currently, there is little knowledge about age-related functional changes in other brain areas in the somatosensory network (secondary somatosensory cortex (SII), and insular, anterior (ACC) and posterior cingulate cortices (PCC)). %26lt;br%26gt;We investigated 16 elderly (age range, 62-71 years) and 18 young subjects (age range, 21-28 years) by determining the current perception threshold (CPT) and applying functional magnetic resonance imaging (fMRI) using a 3.0 Tesla scanner under tactile stimulation of the right hand. %26lt;br%26gt;CPT was positively correlated with age. fMRI analysis revealed significantly increased activation in the contralateral SI and ipsilateral motor cortex in elderly subjects. Furthermore, we demonstrated age-related reductions in the activity in the SII, ACC, FCC, and dorsal parts of the corpus callosum. %26lt;br%26gt;Our study revealed dramatic age-related differences in the processing of a simple tactile stimulus in the somatosensory network. Specifically, we detected enhanced activation in the contralateral SI and ipsilateral motor cortex assumingly caused by deficient inhibition and decreased activation in later stages of somatosensory processing (SII, cingulate cortex) in elderly subjects. These results indicate that, in addition to over-activation to compensate for impaired brain functions, there are complex mechanisms of modified inhibition and excitability involved in somatosensory processing in the ageing brain.

  • 出版日期2013-2-1