Molecular Dynamics Simulation of Condensed-Phase Chiral Molecular Propellers

作者:Yoneya M*; Tabe Y; Yokoyama H
来源:Journal of Physical Chemistry B, 2010, 114(25): 8320-8326.
DOI:10.1021/jp101066t

摘要

Molecular dynamics simulations were performed for an axial-chiral liquid crystalline (LC) monolayer under trans-monolayer gas flow. The rotational dynamics of the monolayer chiral LC molecule along its long-molecular axis were analyzed at the molecular level. We found a precise correspondence between the flow-driven molecular rotation direction and molecular chirality as well as between the rotation direction and the trans-monolayer flow direction. The rotational direction exactly corresponded to what was expected in the proposed chiral molecular propeller model (Tabe, Y.; Yokoyama, H. Nat. Mater. 2003, 2, 806). Among the four trans-monolayer gas species we investigated, we found argon to be the most efficient at driving the chiral molecular propeller and helium the least efficient.

  • 出版日期2010-7-1