摘要

The nonequilibrium absorbing phase transition of the discrete conserved Manna model was studied via Monte Carlo simulations on a one-dimensional chain, using the natural initial states with a sequential update. The critical density of the particles was found to be smaller than the recently reported value, and the order-parameter exponent was considerably different from the directed percolation (DP) value. The influence of quenched disorder was also studied on a diluted strip of L-x x L-y lattice sites with L-x >> Ly, and the results were compared with those of the contact process (CP). It was found that the Manna model and the CP exhibited distinctly different behaviors; the CP exhibited nonuniversal power-law decreases of active-site densities in the Griffith phase, whereas the Manna model showed a standard critical behavior. These results consistently suggest that the Manna model belongs to a universality class that is different from the DP class.

  • 出版日期2014-6-25