摘要

Many exoskeletons exhibit multifunctional performance by combining protection from rigid ceramic components with flexibility through articulated interfaces. Structure-to-function relationships of these natural bioarmors have been studied extensively, and initial development of structural (load-bearing) bioinspired armor materials, most often nacre-mimetic laminated composites, has been conducted. However, the translation of segmented and articulated armor to bioinspired surfaces and applications requires new computational constructs. We propose a novel hierarchical computational model, MetaMesh, that adapts a segmented fish scale armor system to fit complex "host surfaces". We define a "host" surface as the overall geometrical form on top of which the scale units are computed. MetaMesh operates in three levels of resolution: (i) locally to construct unit geometries based on shape parameters of scales as identified and characterized in the Polypterus senegalus exoskeleton, (ii) regionally-to encode articulated connection guides that adapt units with their neighbors according to directional schema in the mesh, and (iii) globally-to generatively extend the unit assembly over arbitrarily curved surfaces through global mesh optimization using a functional coefficient gradient. Simulation results provide the basis for further physiological and kinetic development. This study provides a methodology for the generation of biomimetic protective surfaces using segmented, articulated components that maintain mobility alongside full body coverage.

  • 出版日期2015-3