摘要

The nested subset pattern (nestedness) of faunal assemblages has been a research focus in the fields of island biogeography and conservation biology in recent decades. However, relatively few studies have described nestedness in butterfly assemblages in oceanic archipelago systems. Moreover, previous studies often quantified nestedness using inappropriate nestedness metrics and random fill algorithms with high Type I errors. The aims of this study are to examine the existence of nestedness and underlying causal mechanisms of butterfly assemblages in the Zhoushan Archipelago, China. We used the line-transect method to determine butterfly occupancy and abundance on 42 study islands from July to August 2014. We obtained butterfly life-history traits (wingspan, body weight and minimum area requirement) by field work and island geographical features (area and isolation) from the literature. We used the recently developed metric WNODF to estimate nestedness. Partial Spearman rank correlation was used to evaluate the associations of nestedness and island geographical features as well as butterfly life-history traits related to species extinction risk and colonization ability. The butterfly assemblages were significantly nested. Island area and minimum area requirement of butterflies were significantly correlated with nestedness after controlling for other independent variables. In contrast, the nestedness of butterflies did not appear to result from passive sampling or selective colonization. However, multi-year studies are needed to confirm that target effects are not muddling these results. Our results indicate that selective extinction may be the main driver of nestedness of butterfly assemblages in our study system. From a conservation viewpoint, we should protect both large islands and species with large area requirement to maximize the number of species preserved.