Adaptations of motoneuron properties after weight-lifting training in rats

作者:Krutki Piotr; Mrowczynski Wlodzimierz; Baczyk Marcin; Lochynski Dawid; Celichowski Jan
来源:Journal of Applied Physiology, 2017, 123(3): 664-673.
DOI:10.1152/japplphysiol.00121.2017

摘要

<jats:p> Resistance training, with repeated short-term and high-intensity exercises, is responsible for an increase in muscle mass and force. The aim of this study was to determine whether such training induces adaptations in the electrophysiological properties of motoneurons innervating the trained muscles and to relate these adaptive changes to previous observations made on motor unit contractile properties. The study was performed on adult male Wistar rats. Animals from the training group were subjected to a 5-wk voluntary progressive weight-lifting program, whereas control rats were restricted to standard cage activity. Intracellular recordings from lumbar spinal motoneurons were made under pentobarbital anesthesia. Membrane properties were measured, and rhythmic firing of motoneurons was analyzed. Strength training evoked adaptive changes in both slow- and fast-type motoneurons, indicating their increased excitability. A shorter spike duration, a higher input resistance, a lower rheobase, a decrease in the minimum current required to evoke rhythmic firing, an increase in the maximum frequencies of the early-state firing (ESF) and the steady-state firing (SSF), and an increase in the respective slopes of the frequency-current ( f/ I) relationship were observed in fast motoneurons of the trained group. The increase in the maximum ESF and SSF frequencies and an increase in the SSF f/ I slope were also present in slow motoneurons. Higher maximum firing rates of motoneurons as well as higher discharge frequencies evoked at the same level of intracellular depolarization current imply higher levels of tetanic forces developed by motor units over the operating range of force production after strength training. </jats:p><jats:p> NEW &amp; NOTEWORTHY Neuronal responses to weight-lifting training can be observed in altered properties of both slow and fast motoneurons. Motoneurons of trained animals are more excitable, require lower intracellular currents to evoke rhythmic firing, and have the ability to evoke higher maximum discharge frequencies during repetitive firing. </jats:p>

  • 出版日期2017-9