摘要

Currently, several whole-building simulation tools (e.g., esp-r, EnergyPlus, TRNSYS, TAS, IES VE, IDA ICE, VA114, BSim, etc.) are used to assess the energy performance of double-skin facade (DSF) buildings. The aforementioned tools are well suited to assess energy performance of conventional building systems or whole buildings; however, it is questionable whether such tools can accurately describe the transient heat and mass transfer phenomena that occur in the complex three-dimensional geometry of DSFs. This paper describes an empirical validation of the EnergyPlus simulation tool for performance simulation of a DSF. A series of experiments were conducted for cavity airflow and thermal behavior of the DSF and then compared with simulation outputs. In this paper, it is shown that there are significant differences in both thermal and airflow behavior of DSFs between the measurements and simulation predictions by EnergyPlus. This study investigates three cases causing the differences and elucidates what should be considered when modeling DSFs using EnergyPlus.

  • 出版日期2011-12