摘要

In this paper, we present an adaptive control of robotic manipulators with parametric uncertainties and motion constraints. Position and velocity constraints are considered and they are unified and converted into the constraint of the nominal input. An adaptive neural network control is developed to achieve trajectory tracking, while the problems of motion constraints are addressed by considering the saturation effect of the nominal input. The uniform boundedness of all closed-loop signals is verified through Lyapunov analysis. Simulation and experiment results on a 2-degree-of-freedom robotic manipulator demonstrate the effectiveness of the proposed method.

  • 出版日期2017-1