摘要

The study of chemical abundances in stellar atmosphere provides a useful tool to investigate the formation and evolution history of stars. The optical wavelength range has been used almost exclusively in the past to determine the elemental abundance in A-type stars. We use high-resolution, high signal-to-noise ultraviolet spectra obtained from the STIS/NUV-MAMA instrument on board Hubble Space Telescope. The spectra available cover the wavelength ranges 1630 angstrom-1901 angstrom and 2130 angstrom-2887 angstrom. The main challenge to carrying out abundance analysis in the ultraviolet is the extreme level of line blending. Abundance analysis using single isolated spectral lines is almost completely impossible; it is necessary to model spectral windows using spectrum synthesis with fairly complete line-lists. We have used the LTE spectrum synthesis code ZEEMAN to model the UV spectrum of HD 72660, adjusting abundances for a best match for elements with 6 <= Z <= 82 for which lines are present in the Vinna Atomic Line Database line-list. Abundances or upper limits are derived for 32 elements. We find that except a few, our derived abundances are slightly higher than solar values. We estimate upper limits for abundances of eleven elements and abundance values of 12 elements which have not been detected in the optical. The high abundances that we find for some heavy elements may point to radiative levitation. The presence of lanthanides plus our results, suggest the reclassification of HD 72660 as a transition object between an HgMn star and an Am star.

  • 出版日期2016-3-1