An experimental study of the two-way shape memory effect in a NiTi tubular actuator

作者:Yoo Young Ik*; Lee Jung Ju; Lee Chang Ho; Lim Jae Hyuk
来源:Smart Materials and Structures, 2010, 19(12): 125002.
DOI:10.1088/0964-1726/19/12/125002

摘要

In this paper, the two-way shape memory effect (TWSME) in a Ti-54.5 Ni(wt%) alloy was investigated experimentally to develop a NiTi linear actuator. The two-way shape memory effect was induced through a compressive shape memory cycle comprising four steps: (1) loading to maximum deformation; (2) unloading; (3) heating; and (4) cooling. Six types of specimen (one solid cylindrical and five tubular) were used to obtain the two-way shape memory strain and two-way recovery stress and to evaluate the actuating capacity. The two-way actuating strain showed a saturated tendency after several training cycles for the same maximum deformation. A maximum value of the two-way strain was obtained for 7% of maximum deformation, independently of the geometry of the tubular specimens. The two-way strains obtained by the shape memory cycles and two-way recovery stress linearly increase as a function of the maximum deformation and the two-way strain, respectively, and the geometry of specimen affects the two-way recovery stress. Although the results show that sufficient recovery stress can be generated by either the two-way shape memory process or by the one-way shape memory process, the two-way shape memory process can be applied more conveniently to actuating applications.

  • 出版日期2010-12