Application of quartz crystal nanobalance and principal component analysis for detection and determination of nickel in solution

作者:Mirmohseni Abdolreza*; Shojaei Maryam; Feizi Mohammad Ali Hosseinpour; Azhar Fahimeh Farshi; Rastgouye Houjaghan Mehrdad
来源:Journal of Environmental Science and Health - Part A: Toxic/Hazardous Substances & Environmental Engineering , 2010, 45(9): 1119-1125.
DOI:10.1080/10934529.2010.486345

摘要

Quartz crystal nanobalance (QCN) sensors are considered as powerful mass sensitive sensors to determine materials in the sub-nanogram level. In the first part of this study, a single piezoelectric QCN modified with polypyrrole (PPy) has been tested for detection and determination of nickel ions in the solution at room temperature. The developed method was successfully applied for detection of total nickel in samples taken from several hot springs located at the Northwest of Iran. The frequency shifts were linear with respect to the concentration of nickel in solution. Using this method, nickel can be measured in the range of 3-20 mg L(-1). A lower limit of detection of 0.79 mg L(-1) and a sensivity factor of 4.429 Hz/mg L-1 were obtained. Some possible interference such as heavy metal ions (lead, mercury, and cadmium) was checked. No major interference was observed with the performance of the sensor except for mercury. To evaluate the ability of the PPy-modified QCN in discriminating between nickel ions and interfering mercury ions, a principal component analysis (PCA) was carried out. PCA was utilized to process the frequency response data of the single piezoelectric crystal at different times, considering different adsorption-desorption dynamics of nickel and interfering mercury ions on electrode. Using PCA, it was found that about 97.90% of the data variance could still be explained by two principal components (PC1 and PC2). The score plot of the data for the first two PCs showed that the PPy-modified QCN yields favorable identification and quantification performances for nickel ions. The accuracy of method for hot spring samples was evaluated and RSD of 4.10% was obtained.

  • 出版日期2010