摘要

An electrochemiluminescence (ECL) biosensor based on functional electrospun nanofibers for hybridization detection of specific CdkN2A/p16 anti-oncogene at trace level via binding luminescent composite nanoparticles for signal amplification has been developed. The carboxylated multiwalled carbon nanotubes (MWCNTs) doped polycaprolactam 6 (PA6) electrospun nanofibers (PA6-MWCNTs) was prepared via electrospinning, which served as the nanosized backbones for silica nanoparticles (SiO2) electrodeposition. The functional electrospun nanofibers (PA6-MWCNTs-SiO2) used as supporting scaffolds for single-stranded DNA1 (ssDNA1) immobilization can dramatically increase the amount of DNA attachment and the sensitivity of hybridization. The sandwich construction of ssDNA1-CdkN2A/p16 anti-oncogene -tri(2,2'-bipyridyl)ruthenium(II) (Ru(bPY)(3)(2+))/silver nanoparticles (AgNPs) doped gold (Au) core-shell luminescent composite nanoparticles (RuAg@AuNPs)-labeled ssDNA2 (RuAg@Au-ssDNA2) was fabricated through a hybridization reaction. It was observed that high amount of doped Ru(bpy)(3)(2+) in RuAg@AuNPs successfully amplify the recognition signal by adding tripropylamine (TPrA). The change of ECL intensity was found to have a linear relationship in respect to the logarithm of the CdkN2A/p16 anti-oncogene concentrations in the wide range of 1.0 x 10(-15) similar to 1.0 x 10(-1)(2) M, with a detection limit of 0.5 fM (S/N = 3) which is comparable or better than that in reported anti-oncogene assays. Excellent sensitivity and selectivity make the developed biosensor a promising tool for the detection of tumor biomarkers.