Adaptive Walking of a Quadrupedal Robot Based on Layered Biological Reflexes

作者:Zhang Xiuli*; E Mingcheng; Zeng Xiangyu; Zheng Haojun
来源:Chinese Journal of Mechanical Engineering (english Edition), 2012, 25(4): 654-664.
DOI:10.3901/CJME.2012.04.654

摘要

A multiple-legged robot is traditionally controlled by using its dynamic model. But the dynamic-model-based approach fails to acquire satisfactory performances when the robot faces rough terrains and unknown environments. Referring animals' neural control mechanisms, a control model is built for a quadruped robot walking adaptively. The basic rhythmic motion of the robot is controlled by a well-designed rhythmic motion controller(RMC) comprising a central pattern generator(CPG) for hip joints and a rhythmic coupler (RC) for knee joints. CPG and RC have relationships of motion-mapping and rhythmic couple. Multiple sensory-motor models, abstracted from the neural reflexes of a cat, are employed. These reflex models are organized and thus interact with the CPG in three layers, to meet different requirements of complexity and response time to the tasks. On the basis of the RMC and layered biological reflexes, a quadruped robot is constructed, which can clear obstacles and walk uphill and downhill autonomously, and make a turn voluntarily in uncertain environments, interacting with the environment in a way similar to that of an animal. The paper provides a biologically inspired architecture, with which a robot can walk adaptively in uncertain environments in a simple and effective way, and achieve better performances.

全文