摘要

Land-subsidence prediction depends on an appropriate subsidence model and the calibration of its parameter values. A modified inverse procedure is developed and applied to calibrate five parameters in a compacting confined aquifer system using records of field data from vertical extensometers and corresponding hydrographs. The inverse procedure of COMPAC (InvCOMPAC) has been used in the past for calibrating vertical hydraulic conductivity of the aquitards, nonrecoverable and recoverable skeletal specific storages of the aquitards, skeletal specific storage of the aquifers, and initial preconsolidation stress within the aquitards. InvCOMPAC is modified to increase robustness in this study. There are two main differences in the modified InvCOMPAC model (MInvCOMPAC). One is that field data are smoothed before diagram analysis to reduce local oscillation of data and remove abnormal data points. A robust locally weighted regression method is applied to smooth the field data. The other difference is that the Newton-Raphson method, with a variable scale factor, is used to conduct the computer-based inverse adjustment procedure. MInvCOMPAC is then applied to calibrate parameters in a land subsidence model of Shanghai, China. Five parameters of aquifers and aquitards at 15 multiple-extensometer sites are calibrated. Vertical deformation of sedimentary layers can be predicted by the one-dimensional COMPAC model with these calibrated parameters at extensometer sites. These calibrated parameters could also serve as good initial values for parameters of three-dimensional regional land subsidence models of Shanghai.

  • 出版日期2016-5
  • 单位南京大学; 上海市地质调查研究院