摘要

NKX2.5 plays important roles in heart development. Being a transcription factor, NKX2.5 exerts its biological functions in nucleus. However, the sequence motif that localize NKX2.5 into nucleus is still not clear. Here, we found a R/K-rich sequence motif from Q187 to R197 (QNRRYKCKRQR) was required for exclusive nuclear localization of NKX2.5. Eight truncated plasmids (E109X, Q149X, Q170X, Q187X, Q198X, Y256X, Y259X, and C264X) which were associated with congenital heart disease (CHD) were constructed. Compared with the wild type NKX2.5, the proteins E109X, Q149X, Q170X, Q187X without intact homeodomain (HD) showed no transcriptional activity while Q198X, Y256X, Y259X and C264X with intact HD showed 50 to 66% transcriptional activity. E109X, Q149X, Q170X, Q187X without intact HD localized in the cytoplasm and nucleus simultaneously and Q198X, Y256X, Y259X and C264X with intact HD localized completely in nucleus. These results inferred the indispensability of (187)QNRRYKCKRQR(197) in exclusive nucleus localization. Additionally, this sequence motif was very conservative among human, mouse and rat, indicating this motif was important for NKX2.5 function. Thus, we concluded that R/K-rich sequence motif (187Q)NRRYKCKRQR(197) played a central role for NKX2.5 nuclear localization. Our findings provided a clue to understand the mechanisms between the truncated NKX2.5 mutants and CHD.