Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction

作者:Pezzi Nicole; Assis Amanda Freire; Cotrim Sousa Larissa Cotrim; Lopes Gabriel Sarti; Mosella Maritza Salas; Lima Djalma Sousa; Bombonato Prado Karina F; Passos Geraldo Aleixo*
来源:Molecular Immunology, 2016, 77: 157-173.
DOI:10.1016/j.molimm.2016.08.003

摘要

We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence thatAire also plays a role in controlling mTEC-thymocyte adhesion.

  • 出版日期2016-9