摘要

In evolutionary multi-objective optimization, achieving a balance between convergence speed and population diversity remains a challenging topic especially for many-objective optimization problems (MaOPs). To accelerate convergence toward the Pareto front and maintain a high degree of diversity for MaOPs, we propose a new many-objective dynamical evolutionary algorithm based on E-dominance and adaptive-grid strategies (EDAGEA). In EDAGEA, it incorporates the E_dominance and adaptive strategies to enhance the search ability. Instead of the Pareto dominance mechanism in the traditional dynamical evolutionary algorithm, EDAGEA employs the E-dominance strategy to improve the selective pressure and to accelerate the convergence speed. Moreover, EDAGEA incorporates the adaptive-grid strategy to promote the uniformity and diversity of the population. In the experiments, the proposed EDAGEA algorithm is tested on DTLZ series problems under 3-8 objectives with diverse characteristics and is compared with two excellent many-objective evolutionary algorithms. Experimental results demonstrate that the proposed EDAGEA algorithm exhibits competitive performance in terms of both convergence speed and diversity of population.