Brain Interstitial Fluid Drainage Alterations in Glioma-Bearing Rats

作者:Guan, Xiangping; Wang, Wei; Wang, Aibo; Teng, Ze; Han, Hongbin*
来源:Aging and Disease, 2018, 9(2): 228-234.
DOI:10.14336/AD.2017.0415

摘要

Real time imaging and measurement of the drug distribution in the brain interstitial space (ISS) are able to determine the effeicency of local brain drug delivery to treatment gliomas. In the present study, we used a tracer-based magnetic resonance imaging (MRI) method to quantitatively analyze the effects of glioma growth on ISF drainage. Sprague-Dawley rats were randomly divided into six groups (n = 6). C6 glioma cells were implanted into either the caudate nucleus or thalamus of rats and then were examined 10 or 20 days after implantation. The two control groups were treated with vehicle. A tracer was injected into the caudate nucleus of control rats and rats with gliomas growing in the thalamus for 10 or 20 days. The tracer was similarly injected into the thalamus of control rats and rats implanted with gliomas in the caudate nucleus. The diffusion and clearance parameters of the tracer were calculated using tracer-based MRI techniques. We found that glioma implanted in the caudate nucleus significantly decreased the speed of the ISF flow in thalamus. With the growth of the glioma in thalamus, the drainage route of the brain ISF flow was altered in the caudate nucleus, but the speed of the flow was not significantly changed. These findings indicate that tracer-based MRI is a promising technique for optimizing the interstitial administration of therapeutics aimed at treating brain gliomas.