A Photo-Labile Thioether Linkage to Phycoviolobilin Provides the Foundation for the Blue/Green Photocycles in DXCF-Cyanobacteriochromes

作者:Burgie E Sethe; Walker Joseph M; Phillips George N Jr; Vierstra Richard D*
来源:Structure, 2013, 21(1): 88-97.
DOI:10.1016/j.str.2012.11.001

摘要

The phytochrome superfamily encompasses a diverse collection of photochromic photoreceptors in plants and microorganisms that employ a covalently linked bilin cradled in a cGMP-phosphodiesterase/adenylyl-cyclase/FhlA (GAF) domain to detect light. Whereas most interconvert between red- and far-red-light-absorbing states, cyanobacteria also express variants called cyanobacteriochromes (CBCRs) that modify bilin absorption to collectively perceive the entire visible spectrum. Here, we present two X-ray crystallographic structures of the GAF domain from the blue/green photochromic CBCR PixJ from Thermosynechococcus elongatus. These structures confirm the hypothesis that CBCRs variably manipulate the chromophore pi-conjugation system through isomerization and a second thioether linkage, in this case involving the bilin Cl 0 carbon and Cys494 within a DXCF sequence characteristic of blue/green CBCRs. Biochemical studies support a mechanism for photoconversion whereby the second linkage ruptures on route to the green-light-absorbing state. Collectively, the TePixJ(GAF) models illustrate the remarkable structural and photochemical versatility among phytochromes and CBCRs in driving light perception.

  • 出版日期2013-1-8