Depolarizing bipolar cell dysfunction due to a Trpm1 point mutation

作者:Peachey Neal S*; Pearring Jillian N; Bojang Pasano Jr; Hirschtritt Matthew E; Sturgill Short Gwen; Ray Thomas A; Furukawa Takahisa; Koike Chieko; Goldberg Andrew F X; Shen Yin; McCall Maureen A; Nawy Scott; Nishina Patsy M; Gregg Ronald G
来源:Journal of Neurophysiology, 2012, 108(9): 2442-2451.
DOI:10.1152/jn.00137.2012

摘要

Peachey NS, Pearring JN, Bojang P Jr, Hirschtritt ME, Sturgill-Short G, Ray TA, Furukawa T, Koike C, Goldberg AF, Shen Y, McCall MA, Nawy S, Nishina PM, Gregg RG. Depolarizing bipolar cell dysfunction due to a Trpm1 point mutation. J Neurophysiol 108: 2442-2451, 2012. First published August 15, 2012; doi:10.1152/jn.00137.2012.-Mutations in TRPM1 are found in humans with an autosomal recessive form of complete congenital stationary night blindness (cCSNB). The Trpm1(-/-) mouse has been an important animal model for this condition. Here we report a new mouse mutant, tvrm27, identified in a chemical mutagenesis screen. Genetic mapping of the no b-wave electroretinogram (ERG) phenotype of tvrm27 localized the mutation to a chromosomal region that included Trpm1. Complementation testing with Trpm1(-/-) mice confirmed a mutation in Trpm1. Sequencing identified a nucleotide change in exon 23, converting a highly conserved alanine within the pore domain to threonine (p. A1068T). Consistent with prior studies of Trpm1(-/-) mice, no anatomical changes were noted in the Trpm1(tvrm27/tvrm27) retina. The Trpm1(tvrm27/tvrm27) phenotype is distinguished from that of Trpm1(-/-) by the retention of TRPM1 expression on the dendritic tips of depolarizing bipolar cells (DBCs). While ERG b-wave amplitudes of Trpm1(+/-) heterozygotes are comparable to wild type, those of Trpm1(+/tvrm27) mice are reduced by 32%. A similar reduction in the response of Trpm1(+/tvrm27) DBCs to LY341495 or capsaicin is evident in whole cell recordings. These data indicate that the p. A1068T mutant TRPM1 acts as a dominant negative with respect to TRPM1 channel function. Furthermore, these data indicate that the number of functional TRPM1 channels at the DBC dendritic tips is a key factor in defining DBC response amplitude. The Trpm1(tvrm27/tvrm27) mutant will be useful for elucidating the role of TRPM1 in DBC signal transduction, for determining how Trpm1 mutations impact central visual processing, and for evaluating experimental therapies for cCSNB.

  • 出版日期2012-11