摘要

As a key component of hydraulic control systems, hydraulic servovalves influence their performance significantly. Unpredictable self-excited noise inside hydraulic servovalves may cause instability and even failure. Being functional, with higher saturation magnetization and increased viscosity when exposed to a magnetic field, magnetic fluids (MFs) have been widely used in dampers, sealing, and biomedical treatment. In this paper, magnetic fluids are applied in the torque motor of a hydraulic servovalve to exert damping and resistance for vibration and noise suppression. Construction of the torque motor armature with magnetic fluids is introduced and the forces due to magnetic fluids on the torque motor armature are studied. Based on a bi-viscosity-constituted relationship, a mathematical model of the damping force from magnetic fluids is built when magnetic fluids are filled in the working gaps of the torque motor. Measurements of the properties of an Fe3O4 composite magnetic fluid are carried out to calculate the parameters of this mathematical model and to investigate the influence of magnetic fluids on the vibration characteristics of the armature assembly. The simulated and tested harmonic responses of the armature with and without magnetic fluids show the good suppression effects of magnetic fluids on the self-excited noise inside the servovalve.