摘要

The inverted teat defect is characterized by the failure of teats to protrude from the udder surface and has a negative effect on the economic efficiency of pig production. The inverted teat defect is influenced by genetic factors, but the number and identity of relevant genes are unknown. In this study, we compared the mRNA expression of teat tissues from unaffected pigs and affected pigs by using microarrays. Simultaneously, 24,123 probe sets were screened, of which some 15,000 had present calls and were analyzed for differential expression between mesenchymal and epithelial tissue of 3 categories of teats (i.e., normal teats of unaffected and affected animals, and inverted teats of the latter). Differential expression was more pronounced in epithelial than in mesenchymal tissue, and the comparisons among the 3 categories of teats showed that local processes at the side of the affected area as well as processes taking place at the level of the organ contribute to the development of inverted teats. Genes related to biofunctions of cell maintenance, proliferation, differentiation, and replacement; organismal, organ, and tissue development; genetic information and nucleic acid processing; and cell-to-cell signaling and interaction were differentially expressed, depending on the teat phenotype and the status of the animal as affected or unaffected. In particular, genes encoding members of canonical pathways of growth factor signaling were highlighted. Complementary to previous real-time quantitative reverse-transcription PCR experiments showing upregulation of growth factors (epidermal growth factor, fibroblast growth factor, hepatocyte growth factor, platelet-derived growth factor, vascular endothelial growth factor) and their receptors in the inverted teat, here it is shown that the abundance of transcripts encoding subordinated proteins (acid phosphatase 1, soluble; activating transcription factor 2; casein kinase 2, a 1 polypeptide; casein kinase 2, a prime polypeptide; actinin, a 2; and Homo sapiens growth factor receptor-bound protein 2) within the growth factor signaling pathways are also affected. Tuning of the expression of genes of these pathways balances the differentiation and proliferation of epithelial and mesenchymal teat tissue and finally affects the shape and structure of the teats.

  • 出版日期2012-1