The Dipeptidyl Peptidase-4 Inhibitor Des-Fluoro-Sitagliptin Regulates Brown Adipose Tissue Uncoupling Protein Levels in Mice with Diet-Induced Obesity

作者:Shimasaki Takanobu; Masaki Takayuki*; Mitsutomi Kimihiko; Ueno Daisuke; Gotoh Koro; Chiba Seiichi; Kakuma Tetsuya; Yoshimatsu Hironobu
来源:PLos One, 2013, 8(5): e63626.
DOI:10.1371/journal.pone.0063626

摘要

Objective: Dipeptidyl peptidase (DPP)-4 is responsible for the degradation of several peptides that contain an alanine or proline at the penultimate position or position P1. DPP-4 inhibitors (DPP-4is) have protective effects against type-2 diabetes and several metabolic disorders.
Methods: In the present study, we examined the effects of des-fluoro-sitagliptin (DFS), a DDP-4i, on body adiposity and levels of peroxisome proliferator-activated receptor (PPAR)-alpha, PPAR-gamma coactivator-1 (PGC-1), and uncoupling proteins (UCPs) in mice with diet-induced obesity.
Results: Treatment with DFS dose-dependently decreased the weight of white adipose tissue and serum levels of glucose, compared with controls, without influencing food intake (P<0.05). Additionally, DFS treatment increased the levels of PPAR-alpha, PGC-1, and UCPs in brown adipose tissue (BAT), and of PPAR-alpha and UCP3 in skeletal muscle (P<0.05). Furthermore, the effects on BAT PGC-1 and muscle PPAR-alpha levels were attenuated by treatment with the glucagon-like peptide 1 (GLP-1) antagonist exendin (9-39). Interestingly, hypothalamic levels of proopiomelanocortin (POMC) were increased by DFS treatment and the effects of DFS on PPAR-alpha, PGC-1, and UCP levels were attenuated in melanocortin (MC)-4 receptor-deficient mice.
Conclusions: In conclusion, high-dose DFS appeared to regulate body adiposity and UCPs in mice with diet-induced obesity, at least partly through a GLP-1 and/or MC-4 pathway.

  • 出版日期2013-5-16

全文