摘要

The solutions of stress and displacement of a circular opening excavated in brittle and strain-softening rock mass incorporating rockbolts effectiveness and seepage force are presented in this study. The evolution equation is reconstructed for the strength parameters that incorporate these factors. Based on the evolution equation, an improved numerical method and stepwise procedure are presented which are compatible with the Mohr-Coulomb (M-C) and the generalized Hoek-Brown (H-B) failure criteria, respectively. Then given three interaction mechanisms between rockbolts and surrounding rock, solutions for stress and displacement are proposed in line with the improved numerical method and numerical stepwise procedure. The proposed approach can be reduced to Fahimifar and Soroush's (Tunn Undergr Space Technol 20:333-343, 2005) solutions for special cases. The proposed method was validated by field monitoring data and FLAC results of Yanzidong tunnel. Examples under the M-C and generalized H-B failure criteria for rock mass are generated through MATLAB programming. Moreover, parametric studies are conducted to highlight the influence of rockbolts effectiveness in combination with seepage force on the stress and displacement of very good, average, and very poor surrounding rock. Results show that in this case, stress confinement is higher and tunnel convergences are lower than the corresponding stresses and displacements obtained in non-reinforced tunnels. Displacement and plastic radius are also higher than those without considering seepage force.

全文