摘要

Electromechanical couplings have been reported to play a crucial role in determining important behavior of nonlinear systems. In this study, we analyzed the nonlinear dynamic characteristics of the electromechanical coupling system. First, considering the electromechanical coupling effect of the system, differential equation of the system was obtained by combining the Park equation of a permanent-magnet synchronous motor with the rotor dynamics equation. Then, the coordinate plane projection method was used to analyze the chaotic phenomenon of the electromechanical coupling system. Through calculating the weight value of the 10 projection planes of the electromechanical coupling system, four projection planes with smaller weight values were chosen. Finally, the analysis of the four projection planes of the system indicated that the whole system could reach to the stable state by only controlling the rotational speed in the steady state. In this perspective, the 5-degree-of-freedom system reduced to 2-degree-of-freedom system. Our results would help us create an electromechanical coupling system with a control strategy.