Ultrafast Protein Folding in Membrane-Mimetic Environments

作者:Krainer Georg*; Hartmann Andreas; Anandamurugan Abhinaya; Gracia Pablo; Keller Sandro*; Schlierf Michael*
来源:Journal of Molecular Biology, 2018, 430(4): 554-564.
DOI:10.1016/j.jmb.2017.10.031

摘要

Proteins fold on timescales from hours to microseconds. In addition to protein size, sequence, and topology, the environment represents an equally important factor in determining folding speed. This is particularly relevant for proteins that require a lipid membrane or a membrane mimic to fold. However, only little is known about how properties of such a hydrophilic/hydrophobic interface modulate the folding landscape of membrane-interacting proteins. Here, we studied the influence of different membrane-mimetic micellar environments on the folding and unfolding kinetics of the helical-bundle protein Mistic. Devising a single molecule fluorescence spectroscopy approach, we extracted folding and unfolding rates under equilibrium conditions and dissected the contributions from different detergent moieties to the free-energy landscape. While both polar and nonpolar moieties contribute to stability, they exert differential effects on the free-energy barrier: Hydrophobic burial stabilizes the folded state but not the transition state in reference to a purely aqueous environment; by contrast, zwitterionic headgroup moieties stabilize the folded state and, additionally, lower the free-energy barrier to accelerate the folding of Mistic to achieve ultrafast folding times down to 35 mu s.

  • 出版日期2018-2-16