摘要

From 1975 to 1976, an outburst was detected in the light curve of the X-ray transient A0620-00 using the Ariel V and SAS-3 experiments. In this article we model the outburst with the hydrodynamical model proposed by Mendoza et al. (Mon. Not. R. Astron. Soc. 395:1403, 2009). The physical model is constructed assuming basic mass and momentum conservation laws associated to the motion of the shock waves developed inside the expanding relativistic jet of the source. These internal shock waves are produced as a result of periodic variations of the injected mass and velocity of the flow at the base of the jet. The observations of this X-ray light curve present two clear bumps. The first one is modelled assuming periodic variations of the injected velocity at the base of the jet, while the second one can either be modelled by further velocity oscillations, or by a periodic variation of the mass injection rate at the base of the jet at a latter time. This latter model is statistically more significant for the observed data, than the former. The fitting of the data fixes different parameters of the model, such as the mean mass injection rate at the base of the jet and the oscillation frequency of the flow as measured on the rest frame of the central source.

  • 出版日期2015-12