摘要

Heterogeneous wireless networks (HetNets) provide a powerful approach to meeting the dramatic mobile traffic growth, but also impose a significant challenge on backhaul. Caching and multicasting at macro and pico base stations (BSs) are two promising methods to support massive content delivery and reduce backhaul load in HetNets. In this paper, we jointly consider caching and multicasting in a large-scale cache-enabled HetNet with backhaul constraints. We propose a hybrid caching design consisting of identical caching in the macro-tier and random caching in the pico-tier, and a corresponding multicasting design. By carefully handling different types of interferers and adopting appropriate approximations, we derive tractable expressions for the successful transmission probability in the general signal-to-noise ratio (SNR) and user density region as well as the high SNR and user density region, utilizing tools from stochastic geometry. Then, we consider the successful transmission probability maximization by optimizing design parameters, which is a very challenging mixed discrete-continuous optimization problem. By exploring structural properties, we obtain a near optimal solution with superior performance and manageable complexity. This solution achieves better performance in the general region than any asymptotically optimal solution, under a mild condition. The analysis and optimization results provide valuable design insights for practical cache-enabled HetNets.