Accounting for marine reserves using spatial stock assessments

作者:McGilliard Carey R*; Punt Andre E; Methot Richard D Jr; Hilborn Ray
来源:Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(2): 262-280.
DOI:10.1139/cjfas-2013-0364

摘要

Some fish stock assessments are conducted in regions that contain no-take marine reserves (NTMRs). NTMRs are expected to lead to spatial heterogeneity in fish biomass by allowing a buildup of biomass inside their borders while fishing pressure occurs outside. Stock assessments do not typically account for spatial heterogeneity caused by NTMRs, which may lead to biased estimates of biomass. Simulation modeling is used to analyze the ability of several stock assessment configurations to estimate current biomass after the implementation of a single, large NTMR. Age-structured spatial operating models with three patterns of ontogenetic movement are used to represent the "true" population dynamics. Results show that assessing populations as a single stock with use of fishery catch-rate data and without accounting for the NTMR results in severe underestimation of biomass for two of the movement patterns. Omitting fishery catch-rate data or allowing time-varying dome-shaped selectivity after NTMR implementation leads to improved estimates of current biomass, but severe bias in estimated trends in biomass over time. Performing separate assessments for fished areas and NTMRs leads to improved estimation performance in the absence of movement among assessment areas, but can severely overestimate biomass otherwise. Performing a spatial assessment with estimation of movement parameters among areas was found to be the best way to assess a species, even when movement patterns were unknown. However, future work should explore the performance of spatial assessments when catchability varies among areas.

  • 出版日期2015-2