摘要

Ground vibration is one of the environmental concerns caused by mine blasts. The signature-hole technique, essentially the convolution of a single-hole signature with an impulse train function representing the timing of the blast, is one method used to predict and control ground vibrations. This method requires measuring a signature waveform from a singular blasting hole, which may be a limitation. Deconvolution of vibration signals, the inverse problem of signature-hole method, is still a frontier issue to solve that limitation in mining engineering. Wiener filtering deconvolution is used to compress the impulse train into a time-lagged spike, so that a normalized single-hole signature can be extracted from the full blast vibration waveform. The proposed methodology gives good results for a case study of mining blast using electronic detonators. Successful deconvolution will eliminate the need for measuring signatures by using all the seismograph information collected routinely in mine operations.

  • 出版日期2018