摘要

The variation of moisture content in the biomass materials would affect the quality during the utilization of these materials as solid biofuel. The ability to predict the time-dependent moisture contents of the biomass via modeling can help to devise a better way to store and manage these biomass materials. In this study, pieces of aspen stems were subject to cycles of wetting and drying in lab-scale tests. A lumped mathematical model for simulating the moisture changes during storage was developed and calibrated using the experimental data. With the available weather data (air temperature, relative humidity, solar radiation, wind speed, and precipitation) as inputs, the model was then applied to estimate the moisture content of aspen (Populus tremuloides) during one year of storage in the field. Results showed that, for both uncovered bales and covered bales, the predicted moisture contents and the profiles were in good agreement with the measured in-field results. This lumped model may be used as a first approximation, and applied to estimate the moisture content of aspen or similar woody biomass materials during relatively long-term field storage.