摘要

Tuned mass dampers (TMD), active mass dampers (AMD) and hybrid mass dampers (HMD) have been widely applied for vibration control of tall buildings and bridges in the past decade. Recently, the author and his coworkers have developed semiactive or smart tuned mass dampers (STMD) using semiactive variable stiffness systems. STMD's are superior than TMD's in reducing the response of the primary structure. In case the fundamental frequency of the primary structure changes due to damage or deterioration, then the TMD will be off-tune; hence, it will lose its effectiveness significantly, whereas the STMD is robust against such changes as it is always tuned. The author and his coworkers have shown that STMD can provide performance similar to AMD/HMD, but with an order of magnitude less power consumption. In this paper, new adaptive length pendulum STMD's are introduced. The concept of adaptive passive tuned mass dampers (APTMD) is introduced. APTMD is a TMD in which a tuning parameter such as frequency is adjusted passively based on some local mechanical feedback (displacement, velocity, rotation, etc.), but without associated sensing and computer feedback needed in a STMD. Also, the concept of STMD is further developed in this paper and practical STMD's and APTMD's implementation in USA, Japan, and China is presented. Systems with semiactive variable stiffness devices and STMD/APTMD are linear time varying systems (LTV); hence, algorithms are needed for their identification and control. Recently, the author and his coworkers have developed instantaneous frequency tracking control algorithms. In this paper new system identification algorithms based on time frequency methods, such as Empirical Mode Decomposition (EMD), Hilbert Transform (HT), and short time Fourier transform (STFT), are developed. New real time tuning algorithms that identify the instantaneous frequency of the LTV system and tune the STMD are developed based on EMD, HT, and STFT. Systems with STMD subjected to stationary (harmonic, sinsweep, and white-noise) and nonstationary (earthquake) excitations are investigated. The effectiveness of the STMD systems and the new identification and control algorithms is demonstrated by means of numerical simulations and experimental validation.

  • 出版日期2009-12