摘要

The minor principal stress is the key factor influencing the mechanical property of rock, and the strength criterion of conventional triaxial stresses is the basis of any true triaxial criterion. This paper examines the Coulomb criterion, Hoek-Brown criterion, the generalized Hoek-Brown criterion, and the exponential criterion proposed by the author. The procedure to determine the parameters in criteria is studied. Parameters in the generalized Hoek-Brown criterion are sensitive to the power n, thus Coulomb criterion with n=1.0 and the original form of Hoek-Brown criterion with n=0.5, especially that determined by linear regression, are not the best choice for the fitting solution of test data. The exponential criterion determined on the least absolute deviation will approximate a great number of normal test data, and expose the oddity data. It can describe the relation between strength and confining pressure in the entire stress range, with low misfit. The uniaxial compressive strengths predicted by the exponential criterion are nearly the same as the real magnitudes for all rocks. The deviator of strengths under conventional triaxial extension and compression is larger than half of the maximum strength increase from the intermediate principal stress. Therefore, the parameters in the exponential criterion may be completely determined from the strengths under conventional triaxial compression and extension.