摘要

The photochemical reaction and molecular reorientation of a novel photosensitive polyester, poly[oxy(4-n-butyl-3,5-benzoate)oxy-1,4-phenylenediacryloyl] (PPDA-C4BZ), which contains n-butyl side groups and 1,4-phenylenediacryloyl units (PDA chromophores) in the main chain, are reported in detail. We applied two-dimensional (2D) correlation analysis for the infrared (IR) and ultraviolet (UV) absorption spectra of nanoscaled films of PPDA-C4BZ to establish the sequence of the photo-induced segmental reorientations that result from UV irradiation. The photochemical reaction was found to have a greater effect on the polymer's main chains than on its side groups and to induce the reorientation of the polymer molecules. In particular, a cycloaddition process occurs first in the PDA chromophore units and then the local reorientation of the polymer molecules is induced. Namely, such photo-dimerization of the PDA chromophores induces the molecular reorientations of the PDA chromophores and the benzoate units in the main chain. The photo-induced molecular reorientations occur in the following sequence: photodimerization -> benzoate units -> PDA chromophores -> n-butyl side groups. In addition, a two-dimensional map of the first derivatives of the UV absorption spectra with respect to the exposure energy provided evidence of the formation of head-to-head aggregates (i.e., H-aggregates) of PPDA-C4BZ molecules.

  • 出版日期2008-5