摘要

In order to improve the driving efficiency of a morphing trailing-edge, a transmission mechanism with cable networks is developed to amplify the driving force. The nonlinear differential equation of a cable networks with a single node and mid-plate bending is derived. The iterative scheme is given based on the finite difference method. Numerical results show that the cable networks has a higher driving efficiency and reduces the maximum driving force compared with the single cable. In addition, the maximum bending moment of the mid-plane is reduced and the location of the maximum bending moment moves backward. Finally, an experimental device is designed and manufactured to test steel sheet bending with a single cable and cable networks. The experimental result of the relationship between the vertical displacement of the free end and the external load shows that the cable networks reduces the maximum driving force by 41% as compared with the single cable when the equivalent deflection angle of the steel plate is 10°.

  • 出版日期2013

全文