摘要

Inositol 1,4,5-trisphosphate (InsP(3)) production in single cerebellar granule neurons (CGNs) grown in culture was measured using the PH domain of phospholipase C delta1 tagged with enhanced green fluorescent protein (eGFP-PHPLCdelta1). These measurements were correlated with changes in intracellular free Ca2+ determined by single cell imaging. In control CGNs, intracellular Ca2+ stores appeared replete. However, the refilling state of these stores appeared dependent on the fluorophore used to measure Ca2+-release. Thus, methacholine (MCH), acting via muscarinic acetylcholine-receptors (mAchRs), mobilised intracellular Ca2+ in cells loaded with fluo-3 and fura-4f, but not fura-2. Confocal measurements of single CGNs expressing eGFP-PHPLCdelta1 demonstrated that MCH stimulated a robust peak increase in InsP(3), which was followed by a sustained plateau phase of InsP(3) production. In contrast, glutamate-induced InsP(3) signals were weak or not detectable. MCH-stimulated InsP(3) production was reduced by chelation of intracellular Ca2+ with BAPTA, and emptying of intracellular stores with thapsigargin, indicated a positive feedback effect of Ca2+ mobilisation onto PLC activity. In CGNs, NMDA- and KCl-mediated Ca2+-entry significantly enhanced MCH-induced InsP(3) production. Furthermore, mAchR-mediated PLC activation appeared sensitive to the full dynamic range of intracellular Ca2+ increases stimulated by 100 mum NMDA. This dynamic regulation was also observed at the level of PKC activation indicated by an enhanced translocation of eGFP-tagged myristoylated alanine-rich C kinase substrate (MARCKS) protein in cells stimulated with MCH. Thus, NMDA-mediated Ca2+ influx and PLC activation may represent a coincident-detection system whereby ionotropic and metabotropic signals combine to stimulate InsP(3) production and PKC-mediated phosphorylation events in CGNs.

  • 出版日期2004-6