摘要

The thixoforming process is a new method for manufacturing complicated and net shape components through which high strength materials can be formed more easily. In this study 7075 Al alloy which has low extrudability has been thixoformed by backward extrusion process. The recrystallisation and partial melting (RAP) route was used to obtain the semi-solid feedstocks for thixoforming. Microstructural evolution during partial remelting was studied at temperatures for times. Results showed that a fine and globular microstructure can be obtained by the RAP route. The results showed that high semisolid isothermal temperature would increase the liquid volume fraction and accelerate the spherical processing of the solid particles. Furthermore at long holding time, the globular grains coarsened slightly and the average grains size are increased. The experimental results showed that when the semisolid billet is hold at 580 degrees C with the holding time, less than 30 min, the microstructure of the billet is composed of spherical grains and remnant liquids, the average grain size are smaller than 100 mu m. So the remelted billet is suitable for thixoforming. In this paper, a back-extruding of 7075 Al alloy with a high solid fraction in the semi-solid state at 580 degrees C for 10 min was performed. Mechanical properties of thixoformed components at room temperature were examined. Tempering treatment T6 has been applied after thixoforming to investigate the effects of heat treatment on mechanical properties of thixoformed parts. The tensile properties and low hardness values in the as-thixoformed 7075 Al alloy were improved by subsequent heat treatment. Post-forming heat treatment is one of the key parameters for improving the mechanical properties of thixoformed parts.

  • 出版日期2012-6