摘要

Identification of P- and S-phase arrivals is the primary work in microseismic monitoring. In this study, a new multi-step AIC algorithm is proposed. This algorithm consists of P- and S-phase arrival pickers (P-picker and S-picker). The P-picker contains three steps: in step 1, a preliminary P-phase arrival window is determined by the waveform peak. Then a preliminary P-pick is identified using the AIC algorithm. Finally, the P-phase arrival window is narrowed based on the above P-pick. Thus the P-phase arrival can be identified accurately by using the AIC algorithm again. The S-picker contains five steps: in step 1, a narrow S-phase arrival window is determined based on the P-pick and the AIC curve of amplitude biquadratic time-series. In step 2, the S-picker automatically judges whether the S-phase arrival is clear to identify. In step 3 and 4, the AK extreme points are extracted, and the relationship between the local minimum and the S-phase arrival is researched. In step 5, the S-phase arrival is picked based on the maximum probability criterion. To evaluate of the proposed algorithm, a P- and S-picks classification criterion is also established based on a source location numerical simulation. The field data tests show a considerable improvement of the multi-step AIC algorithm in comparison with the manual picks and the original AIC algorithm. Furthermore, the technique is independent of the kind of SNR. Even in the poor-quality signal group which the SNRs are below 5, the effective picking rates (the corresponding location error is <15 m) of P- and S-phase arrivals are still up to 80.9% and 76.4% respectively.