Niacin Treatment of Stroke Increases Synaptic Plasticity and Axon Growth in Rats

作者:Cui Xu; Chopp Michael; Zacharek Alex; Roberts Cynthia; Buller Benjamin; Ion Madalina; Chen Jieli*
来源:Stroke, 2010, 41(9): 2044-2049.
DOI:10.1161/STROKEAHA.110.589333

摘要

Background and Purpose-Niacin is the most effective medication in current clinical use for increasing high-density lipoprotein cholesterol. We tested the hypothesis that niacin treatment of stroke promotes synaptic plasticity and axon growth in the ischemic brain.
Methods-Male Wistar rats were subjected to 2 hours of middle cerebral artery occlusion and treated with or without Niaspan (a prolonged-release formulation of niacin, 40 mg/kg) daily for 14 days starting 24 hours after middle cerebral artery occlusion. The expression of synaptophysin, Nogo receptor, Bielschowsky silver, brain-derived neurotrophic factor, and its receptor tropomyosin-related kinase B were measured by immunohistostaining and Western blot, respectively, in the ischemic brain. Complementing in vivo studies, primary cultured neurons were used to test the effect of niacin and high-density lipoprotein on neurite outgrowth and brain-derived neurotrophic factor/tropomyosin-related kinase B expression.
Results-Niaspan treatment of stroke significantly increased synaptophysin, Bielschowsky silver, brain-derived neurotrophic factor/tropomyosin-related kinase B expression, and decreased Nogo receptor expression in the ischemic brain compared with middle cerebral artery occlusion control animals (P<0.05, n=8/group). Niacin and high-density lipoprotein treatment significantly increased neurite outgrowth and brain-derived neurotrophic factor/tropomyosin-related kinase B expression in primary cultured neurons. Tropomyosin-related kinase B inhibitor attenuated niacin-induced neurite outgrowth (P<0.05, n=6/group).
Conclusions-Niacin treatment of stroke promotes synaptic plasticity and axon growth, which is mediated, at least partially, by the brain-derived neurotrophic factor/tropomyosin-related kinase B pathways. (Stroke. 2010;41:2044-2049.)

  • 出版日期2010-9