Nanoscale studies of plasmonic hot spots using super-resolution optical imaging

作者:Weber Maggie L*; Willets Katherine A
来源:MRS Bulletin, 2012, 37(8): 745-751.
DOI:10.1557/mrs.2012.176

摘要

Plasmonic metal nanoparticles have the ability to act as nanoscale antennas for visible and near-IR (infrared) light, leading to increased electromagnetic fields at their surface. As a result, Raman scattering and/or fluorescence from nearby molecules can be enhanced by many orders of magnitude. However, imaging how these molecules interact with the enhanced fields at the surface of noble metal nanoparticles is a challenge due to the diffraction limit of light. In this article, we review super-resolution imaging of plasmonic hot spots using two all-optical readouts, surface-enhanced Raman scattering and surface-enhanced fluorescence, which are used to locate and track single or a few molecules on the surface of nanoscale-roughened metals. These super-resolution imaging techniques allow localization of the emission centroid of an emitter to better than 5 nm and allow mapping of the electromagnetic field enhancement experienced by molecules at the nanoparticle surface.

  • 出版日期2012-8