摘要

To optimally allocate control authorities to co-existing active actuators, an integrated chassis controller with main/servo-loop structure is designed to coordinate direct yaw moment control and active steering. Firstly, a sliding mode controller in the main-loop calculates the desired stabilizing forces. Then in the servo-loop, by directly considering limits of road friction and actuators, a quadratic programming based control allocation approach is adopted to reasonably and optimally distribute these deisired forces to tire actuator actions. Co-simulation of Matlab/Simulink and Carsim clarifies that the proposed controller could significantly improve vehicle handling performances.

全文