摘要

An important aspect of chemical reactions involves understanding the intermediate steps from reactants to products. The iterative use of mass spectrometry and X-Ray crystallography is demonstrated to be a powerful combination in this respect. We have applied them in identifying molecular clusters in solution followed by their solid-state structural characterizations. We used a key ligand, 2-[(2-hydroxy-3-methoxy-benzylidene)-amino]-ethanesulfonate (L), which serves as chelating/bridging units to stabilize the precursor [Li4Ni6(OH)(2)(L)(6)(CH3CN)(6)](ClO4)(2)center dot 4CH(3)CN. The results of subsequent reactions witness a cascade of processes involving fragmentation, inner bridging ligand substitution (OH- to OCH3-), changing modes of binding (chelate to monodentate) of the key ligand, ion-trapping and exchange (Li+, Na+ and Ca2+) and their site preferences, coordinating and non-coordinating solvents (CH3CN to CH3OH, H2O and EtOH) replacement. The flexibility of the Ni3OL3 species in solution permits the formation of six derivatives. The complimentary techniques open a broader prospect for cluster design and applications.